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Q
uantum sieving is the name given
to the phenomenon by which
the various components of an iso-
topic mixture can be separated

by selective adsorption in narrow pores,

such as those of single-walled carbon nano-

tubes (SWNTs).1�11 The adsorption selectiv-

ity is due to the difference in quantum ki-

netic energy between the isotopes upon

adsorption.

The presence of a sizable isotopic effect

on surface adsorption has been known

since the 1950s,12,13 and it has been used

to efficiently separate ortho- from para-

hydrogen.14 Although the mechanism for

this phenomenon was readily identified as

being related to zero-point quantum

effects,15�18 it was only relatively recently

that Beenakker et al.1 showed, in the frame-

work of a simple repulsive wall model, the

possibility of efficiently separating isotopic

mixtures of light gases by making use of the

different zero-point energies of the two

confined species in very narrow one-

dimensional pores.

Various simulation techniques have

been employed to investigate quantum

sieving in carbon nanotubes, with the aim

of understanding how the isotopic selectiv-

ity depends on the dimension of the confin-

ing SWNT as well as the thermodynamic

conditions at which adsorption takes place

(that is, the temperature, the isotopic com-

position of the mixture, and the external

pressure).

Path integral Monte Carlo (PIMC) simula-

tions have been shown to be effective for

studying adsorption and sieving of hydro-

gen isotopes under a wide range of condi-

tions. Their use was pioneered by Johnson
and collaborators,2,3 who studied, in particu-
lar, the selectivity of T2/H2 mixtures inside
SWNTs and in the interstitial channels of
carbon nanotube bundles. These authors
used an interaction potential model that
neglects the molecular structure of hydro-
gen and developed a method to calculate
the selectivity in the limit of zero pressure
(i.e., neglecting hydrogen�hydrogen inter-
actions) by using the single-particle energy
levels in the confined system.2,3 Their main
finding is that the (3,6) nanotube would
show a T2/H2 selectivity on the order of 105

at 20 K. They further calculated the ex-
pected selectivities for a wide set of nano-
tubes, thus describing the dependence of
this quantity on the radius of the tubes.

The PIMC technique was later extended
to simulate adsorption at finite pressures,4,10

and the sieving properties of various kinds
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ABSTRACT The effect of the quantized rotational degrees of freedom of hydrogen on the adsorption and

sieving properties in carbon nanotubes is studied using computer simulations. We have developed a highly

efficient multiple timestep algorithm for hybrid Monte Carlo sampling of quantized rotor configurations and

extended the grand canonical Boltzmann bias method to rigid linear molecules. These new computational tools

allow us to calculate accurately the quantum sieving selectivities for cases of extreme two-dimensional

confinement as a function of pressure. The para-T2/para-H2 selectivity at 20 K is analyzed as a function of the

tube diameter and the density of adsorbed hydrogen. Extraordinarily high selectivities, up to 2.6 � 108, are

observed in the narrowest nanotube. The quantized nature of the rotational degrees of freedom is found to

dramatically affect adsorption and selectivity for hydrogen isotopes adsorbed in very narrow nanotubes. The T2/

H2 zero-pressure selectivity increases from 2.4 � 104 to 1.7 � 108 in the (3,6) nanotube at 20 K when quantum

rotations are accounted for. The isotopic selectivity is found to increase with pressure, tending to a constant value

at saturation. A simplified mean-field model is used to discuss the origin of this behavior.

KEYWORDS: quantum sieving · path integral Monte Carlo · hybrid Monte
Carlo · grand canonical Monte Carlo · quantum rotors · isotopic effect · adsorption
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of carbonaceous pores have been studied
with this methodology,11,19�21 always assum-
ing that hydrogen could be treated as a spheri-
cal object.

Hathorn et al.5 were the first to address the
effect of the rotational degrees of freedom of
hydrogen on the selectivity. Assuming a de-
coupling of the rotational and translational
motions they showed, using a semiclassical ap-
proach, that one can expect an increase of the
selectivity in narrow tubes by a factor of 100 at
20 K, when compared with models that ap-
proximate hydrogen as a sphere. The impor-
tance of the rotational degrees of freedom on
the selectivity has been confirmed by Trasca et
al.,6 who calculated the D2/H2 selectivity in the

interstitial channels and groove sites of various

carbon nanotube bundles, taking into account transla-

tional and rotational degrees of freedom in the zero-

pressure limit, finding values as high as 109 for the D2/H2

selectivity in the groove sites of the (18,0) tubes.

Lu et al.7,8 calculated the energy levels and the zero-

pressure selectivity of molecular hydrogen in carbon

nanotubes by numerical diagonalization of the Schröd-

inger equation of a confined rotor, finding exception-

ally high valuesOof the order of 108, the details de-

pending on the particular solid�fluid potential

usedOof the total selectivity for T2/H2 mixtures at zero

pressure and 20 K in the narrow (3,6) tube. The availabil-

ity of the wave functions for the various eigenstates of

hydrogen isotopes confined in carbon nanotubes al-

lowed Lu et al. to characterize in detail the origin of

these exceptionally high values, and a novel regime of

“extreme two-dimensional confinement” (X2DC) was

identified. When the dimensions of the confining pores

are so small that the molecular rotation is highly hin-

dered, the zero-point energy of the lighter species be-

comes so high that adsorption is severely hampered. In

the case of X2DC, the adsorbed molecules present, in

their ground state, a substantial orientational localiza-

tion along the nanotube axis.

Independent calculations with an approximate

treatment of the rotational�translational coupling con-

firmed the expectation of high selectivity for rotors con-

fined in narrow SWNTs.9 A phenomenon analogous to

X2DC was subsequently predicted and characterized

computationally in the case of quantum rotors confined

in slit pores.22

Although the experimental verification of the large

selectivity predicted in narrow SWNTs is still lacking,

quantum sieving has been experimentally demon-

strated to occur in the case of adsorption in many mi-

croporous materials such as carbon nanofibers23,24 and

organic frameworks.25 In this latter case, the theoretical

predictions are in good agreement with experimental

results.26

Finally, we note that recent studies have shown

that the transport or membrane selectivity may be en-

hanced over the adsorption selectivity by the fact that

heavier isotopes are found to diffuse more rapidly than

the lighter ones in many kinds of microporous materi-

als, a phenomenon known as “quantum kinetic

sieving”.27�31

In this paper, we address the issue of the contribu-

tion of coupled rotational and translational degrees of

freedom to the isotopic equilibrium selectivity in more

detail, combining results from direct diagonalization of

the single-particle Schrödinger equation and the PIMC

method to investigate the pressure dependence of the

selectivity from the free rotational regime (large SWNTs

and graphite planes) to the regime of X2DC (narrow

SWNTs).

We present the results of calculations at finite pres-

sures and discuss how the selectivity changes in this re-

gime, extending the recently developed Boltzmann

bias (BB) method for grand canonical PIMC simula-

tions10 to the case of rotors adsorbed in narrow pores.

The effect of the quantization of the rotational degrees

of freedom is analyzed by comparing the full quantum

PIMC results with simulations where the rotational de-

grees of freedom are treated classically (while retaining

the full quantum character of the translational degrees

of freedom). We provide details on our efficient hybrid

Monte Carlo (HMC) path integral simulation technique

for quantum rotors. We present the development and

characterization of a multiple timestep integrator to

sample configuration space efficiently.

RESULTS AND DISCUSSION
Single-Molecule Properties. We report in Table 1 the re-

sults obtained by diagonalizing the Hamiltonian de-

scribing the interaction of isolated hydrogen isotopes

confined in SWNTs and on top of a graphite plane.

First of all, we note that the average translational ki-

netic energies in the (3,6) and (2,8) SWNTs are much

higher than the thermal value that would be expected

TABLE 1. Summary of the Properties of Single Rotors Adsorbed in
Nanotubes at T � 20 K, Obtained by Direct Diagonalization of the
Corresponding Hamiltoniana

tube molecule SF PE (K) Tr KE (K) Rot KE (K) �E (K) �̄ (K)

(3,6) para-H2 �640 � 1 303 � 1 147 � 1 540.2 �190.5
(3,6) para-T2 �874 � 1 159 � 1 123 � 1 272.1 �591.7
(2,8) para-H2 �1234 � 1 119 � 1 3.9 � 0.1 235.7 �1110.4
(2,8) para-T2 �1277 � 1 60.2 � 0.1 6.2 � 0.1 118.7 �1210.8
(6,6) para-H2 �998 � 1 47.1 � 0.1 0.7 � 0.1 78.4 �955.2
(6,6) para-T2 �1005 � 1 30.6 � 0.1 0.8 � 0.1 29.8 �995.6
graphite plane para-H2 �346 � 1 41.6 � 0.1 1.79 � 0. 01 133 �316
graphite plane para-T2 �371 � 1 25.8 � 0.1 3.59 � 0. 01 88.8 �356

a�E is the energy difference between the first excited state and the ground state. SF PE:
solid�fluid potential energy. Tr KE: translational kinetic energy. Tot KE: rotational kinetic en-
ergy. The translational kinetic energies do not include the contribution from the free motion along
the tube axis. All of the observables are calculated as thermal averages; �̄ is defined in eq 36.
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for molecules at T � 20 K. A careful analysis of the

eigenstates reveals that these large values of the ki-

netic energy are entirely due to the zero-point transla-

tional motion of the molecules; the separation �E be-

tween the ground state and the first excited state, also

reported in Table 1, is generally much larger than kBT in

almost all configurations, ranging from 540.2 K in the

case of para-H2 in the (3,6) tube to 78.4 K in the case of

para-H2 in the (6,6). The only notable exception is that

of para-T2 adsorbed in the (6,6) tube, where the excited

states are separated by 30 K from the ground state

and are therefore thermally occupied with a non-

negligible probability.

We also notice that the rotational kinetic energies

for H2 and T2 in the (3,6) nanotube are much larger

than the values that can be expected for free rotors at

the same temperatures. In fact, the rotational tempera-

tures for hydrogen and tritium are 88.6 and 29.5 K, re-

spectively, so that the occupation probabilities for the

first excited state at T � 20 K can be expected to be less

than 10�3 in the free rotor case, resulting in average ro-

tational kinetic energies very close to 0. On the other

hand, the rotational kinetic energies are quite large in

the case of adsorption in the narrow (3,6) SWNT. This is

indeed an indication that in the ground state of the ad-

sorbed molecules there is a sizable probability of occu-

pation of the rotational states with nonzero angular

momentum, which is, according to Lu et al., the charac-

teristic indication of attainment of the X2DC regime. In

fact, our calculated first excitation energies �E for hy-

drogen isotopes in the (3,6) tube, reported in Table 1,

are comparable to the values assigned by Lu et al. to the

X2DC regime.

The rotational kinetic energy tends to the free value

as the diameter of the SWNT is increased, becoming

less than 1 K when both species are adsorbed in the

(6,6) tube. In this case, hydrogen and tritium molecules

are almost freely rotating, and one might expect a neg-

ligible contribution to the selectivity from the rota-

tional degrees of freedom in this case. We note, how-

ever, that the (6,6) SWNT is something of a special case,

having a flatter potential energy surface than either

wider or more narrow nanotubes because of the over-

lap of the potential from opposite sides of the nano-

tube, as noted by Challa et al.3 This can also be seen

from Table 1, where we report the properties of hydro-

gen isotopes adsorbed on graphite planes (correspond-

ing to a nanotube of infinite radius). In this case, the ro-

tational kinetic energy of adsorbed isotopes is higher

than that in the (6,6) tube, indicating a slightly larger de-

gree of confinement.

The results obtained by direct diagonalization of

the Hamiltonian of a single particle adsorbed in a SWNT

have been used to check the reliability of the param-

eters entering the multiple timestep algorithm used for

the PIMC simulations, as well as to calculate the value

of �̄ to be used in the BB method, which is also re-

ported in Table 1.

Zero-Pressure Selectivity. The influence of the quantiza-

tion of the rotational degrees of freedom on the selec-

tivity is shown in Table 2, where we report zero-
pressure para-T2/para-H2 selectivities and the average
energies for para-H2 confined in the various SWNTs ac-
cording to different calculation methods. We report the
results of PIMC simulations in two cases: the first is the
full quantum treatment of the rotors, whereas in the
second set of calculations, we have treated rotations
as classical degrees of freedom. These results are com-
pared with those obtained by direct diagonalization of
the single-molecule Hamiltonian, as well as the case in
which the molecules are considered to be perfectly
aligned with the nanotube axis. Under conditions of
strong confinement, this last case is expected to be
comparable with the classical treatment of the rota-
tional degrees of freedom.9

The calculations of the selectivity using the PIMC
technique were performed using the identity transfor-
mation method described in eq 29. It is apparent that
the explicit inclusion of the quantized rotational de-
grees of freedom has a dramatic effect on the selectiv-
ity in the narrowest (3,6) tube, where the selectivity
jumps from 2.4 � 104 to 1.7 � 108, an increase larger
than 7000-fold. In the other tubes, the increase in selec-
tivity ascribed to the rotational degrees of freedom is
much less dramatic, being on the order of 2.3 in the
(2,8) tube and essentially negligible in the case of the
(6,6) tube.

The physical origin of the contribution to the over-
all selectivity due to the quantization of the rotational
degrees of freedom can be seen by analyzing the differ-
ence between the simulations in which the rotations
are treated classically and those in which the rotations
are treated quantally.

TABLE 2. Zero-Pressure Selectivities for para-T2/para-H2 and Confined
para-H2 Observables Calculated for Various Nanotubes at 20 K and
Different Methodologiesa

tube method selectivity SF PE (K) Tr KE (K) Rot KE (K)

(3,6) quantum (DIAG) 1.7 � 108 �640 � 1 303 � 1 147 � 1
(3,6) quantum (PIMC) (1.5 � 0.3) � 108 � 636 � 9 299 � 7 149 � 10
(3,6) classical rotation (PIMC) (2.40 � 0.25) � 104 �898 � 6 270 � 7
(3,6) aligned molecule (DIAG) 2.44 � 104 �914 � 1 270 � 1
(2,8) quantum (DIAG) 50.6 �1234 � 1 119 � 1 3.9 � 0.1
(2,8) quantum (PIMC) 48.6 � 2.5 �1235 � 2 118 � 3 �1.7 � 16
(2,8) classical rotation (PIMC) 21.4 � 0.9 �1274 � 3 104 � 5
(2,8) aligned molecule (DIAG) 17 �1290 � 1 99 � 1
(6,6) quantum (DIAG) 2.5 �998 � 1 47.1 � 0.1 0.7 � 0.1
(6,6) quantum (PIMC) 2.5 � 0.1 �998.7 � 1.3 44 � 6 �4 � 9
(6,6) classical rotation (PIMC) 2.4 � 0.2 �1000.5 � 1.2 46 � 7
(6,6) aligned molecule (DIAG) 2.3 �1005 � 1 42 � 1

aDIAG: direct diagonalization of the single-particle Hamiltonian. PIMC: path integral simulations. The “clas-
sical rotation” model treats the rotational degrees of freedom classically, but the translational degrees of free-
dom quantally. The “aligned molecule” results were obtained by assuming that a molecule is aligned with
the nanotube axis and that rotations do not contribute to the selectivity. Acronyms as in Table 1.
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In the presence of narrow confining potentials, one
expects to find the molecules aligned with the nano-
tube axis, when rotations are treated classically. We
have calculated the average angle � � �acos(|ez|)	 be-
tween the molecular axis of a single bead and the nan-
otube axis in the case of classical rotational degrees of
freedom (and quantized translational ones) as a func-
tion of the distance of the molecule from the nanotube
axis. The results are reported in Figure 1.

In the case when the rotations are treated classi-
cally, one can see that the value � � 8° is obtained for
molecules adsorbed in the (3,6) tube, thus confirming
an almost perfect alignment with the nanotube axis. As
the nanotube radius is increased, the angle tends to
the value �0 � 1 rad � 57.3°, corresponding to a ran-
dom orientation of the linear rotor. We notice that the
angle tends to decrease for molecules away from the
nanotube center. This phenomenon is due to the effect
of the tube walls, whose repulsive potential favors mo-
lecular alignment.

The situation changes dramatically upon quantiza-
tion of the rotational degrees of freedom because the
confining effect of the potential energy is now counter-
balanced by the quantum delocalization of the rota-
tional degrees of freedom. The average angle � be-
tween the direction of the rotor corresponding to a
given bead and the nanotube axis increases from 8 to
about 35° in the case of the (3,6) and from 24 to 56° in
the case of the (2,8) tube. The effect is much less pro-
nounced for molecules confined in the (6,6) tube, where
the calculations with classical or quantized degrees of
freedom gave results almost consistent with free
rotation.

Alternatively, the effect of quantum fluctuations on
the orientation can also be seen by the high value of
the rotational kinetic energy reported in Table 2. Hydro-
gen molecules confined in the narrowest tube have an
average rotational kinetic energy of 147 K, which can be
compared to the free-rotor rotational energy at the
same temperature, which is on the order of 10�9 K due
to the low probability of occupation of the first excited

rotational state at that temperature. Due to the confin-

ing potential that tends to localize the molecular direc-

tion along the nanotube axis, the rotational ground

state of the adsorbed rotor is a superposition of higher

angular momentum states, resulting in a nonzero value

of the average kinetic energy.

The net effect of the quantum rotational delocaliza-

tion on the selectivity in narrow SWNTs can be appreci-

ated in a semiclassical picture. If we consider a mol-

ecule at a given distance from the tube axis, then the

quantization of the rotational degrees of freedom and

the consequent rotational delocalization has the effect

that the molecule sample regions with the potential en-

ergy is higher with respect to an almost perfectly

aligned (classical) configuration. Therefore, the average

potential acting on the center of mass is steeper when

rotations are quantized than in the case when rota-

tions are treated classically. Furthermore, the steep-

ness is larger for the lighter molecule than for the

heavier one. As a consequence, the adsorbed single-

particle energy levels of the lighter rotors have a larger

separation than the energy levels of the heavier species,

not only because of the difference in mass but also be-

cause the quantization of rotations has a different effect

on the two kinds of molecules.

Therefore, the net effect of quantized rotations is to

enhance the spacing between the energy levels with a

greater effect on the light isotope. In light of eq 2, this is

reflected in a corresponding increase of the overall se-

lectivity, as it is indeed observed in the simulations. By a

careful analysis of numerically exact eigenstates of hy-

drogen isotopes confined in carbon nanotubes, Lu et

al.8 found that very high selectivities can be achieved

in geometries so narrow that the ground state takes

contributions from rotational states with finite angular

momentum. We have been able to show,9 using an ap-

proximate model for the description of the coupled ro-

tational and translational degrees of freedom, that un-

der these circumstances a very large contribution to the

selectivity does indeed come from the rotational de-

grees of freedom, as is apparent in the exact result that

we show in Table 2 for the (3,6) tube.

In the larger tubes, the average rotational kinetic en-

ergy is much smaller, indicating that the hydrogen iso-

topes are almost freely rotating, and the contribution of

the rotational degrees of freedom to the selectivity is

therefore smaller. In fact, one can still observe an en-

hancement of a factor of 2.3 in the (2,8) tube when

quantized rotations are included, whereas in the (6,6)

tube, quantized rotations do not significantly alter the

results obtained assuming classical rotations.

Adsorption Isotherms. We have calculated the adsorp-

tion isotherms for different hydrogen isotopes in the

(2,8) and (3,6) SWNTs using the BB grand canonical

PIMC method for both the translational and rotational

degrees of freedom. The results are shown in Figure 2

Figure 1. Average angle � � �acos(|ez|)	 between the nano-
tube and the molecular axes as a function of the distance
from the nanotube center for H2. Filled symbols: full quan-
tum simulations. Open symbols: classical treatment of the
rotational degrees of freedom. Circles refer to the (3,6) tube,
triangles to the (2,8) tube, and diamonds to the (6,6) tube.
The horizontal dashed line represents the value �0 � 57.3°,
which corresponds to a random orientation.
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for the case of the (2,8) tube and in Figure 3 for the

case of the (3,6) tube.

We also report in Figure 2 the adsorption isotherm

of para-T2 in the (2,8) tube obtained with the standard

path integral GCMC method.32 This isotherm agrees

very well with that obtained using the BB method, as

it should, thus validating our implementation.

Quantum effects are quite sizable in the (2,8) SWNT,

although not as dramatic as in the (3,6) nanotube, dis-

cussed below. The isotherms of the lightest and heavi-

est species are separated by about 2 orders of magni-

tude in pressure, as can be seen in Figure 2. As a general

trend, note that the heavier species exhibits the high-

est adsorption at a given pressure. Qualitatively, one

can think that the larger thermal de Broglie wavelength

of the lighter species results in a larger effective

Lennard-Jones radius, thus making adsorption in very

narrow SWNTs less favorable.

This is apparent when considering adsorption in

the (3,6) tube, reported in Figure 3. In this case, the up-

take of T2 begins to be appreciable at about 10�13 bar,

whereas the adsorption of H2 is essentially 0 below 10�5

bar. These two isotherms are separated by almost 8 or-

ders of magnitude in pressure.

The quantum delocalization of the rotational de-

grees of freedom profoundly affects adsorption at high

coverages in much the same way as shown for the zero-
coverage case discussed above. To investigate the mag-
nitude of this effect at high loadings, we have treated
the rotational degrees of freedom of T2 classically and
computed its adsorption in the (3,6) tube. These data
are also plotted in Figure 3. This semiclassical isotherm
is displaced to lower pressures by almost 4 orders of
magnitude from the full quantum case.

Selectivity at Finite Pressures. In this section, we present
path integral calculations for selectivities at finite pres-
sures, up to loadings close to saturation for hydrogen
isotopes in SWNTs. We have used the efficient identity
transformation method of eq 32 to calculate the selec-
tivity directly from its definition in eq 1.

The selectivities at finite pressures depend on the
mole fraction of gases in the bulk. In contrast, the zero-
pressure selectivities are independent of the bulk phase
compositions. Simulation statistics for selectivity calcu-
lations will be better if the composition of the adsorbed
phase is roughly equimolar, and therefore, we fixed
the bulk mole fractions so that the adsorbed phase can
be expected to have an approximately equimolar com-
position. Specifically, for given zero-pressure selectivity
S0(A/B), bulk mole fractions such that yA/yB � 1/S0

should result in an almost 1:1 ratio in the adsorbed
phase. We have therefore performed selectivity calcula-
tions in the (2,8) tube using a mole fraction yT2

� 0.1
and calculations in the (3,6) tube using a mole fraction
yT2

� 10�8.
The results of the calculations, shown in Figure 4

for the case of the (2,8) tube, show an increase of the se-
lectivity with increasing pressure and predict a plateau
in selectivity upon reaching saturation. A similar behav-
ior is observed for the selectivity in the narrow (3,6)
tube, as reported in Figure 5.

The reason for this behavior can be traced back to
the structure of the adsorbed phase. Each of the two
pure species occupies the same nanotube with an al-
most equal linear density of around 0.27 molecules/Å
(recall that gases are adsorbed in single file in these nar-
row SWNTs). Therefore, one might expect an “average
distance” L � 3.7 Å between the molecules in the case
of a saturated mixture. In going from zero to finite pres-

Figure 2. Pure fluid adsorption isotherms for hydrogen iso-
topes in the (2,8) carbon nanotube at T � 20 K. Circles, tri-
angles, and diamonds refer to para-H2, ortho-D2, and para-
T2, respectively. Filled symbols represent simulations
performed using the Boltzmann bias method, whereas open
symbols represent the results obtained with the standard
GCMC prescription. Lines are drawn as a guide for the eye.

Figure 3. Pure fluid adsorption isotherms for hydrogen iso-
topes in the (3,6) carbon nanotube at T � 20 K. Circles, tri-
angles, and diamonds refer to para-H2, ortho-D2, and para-
T2, respectively. The isotherm reported with empty
diamonds corresponds to the case in which the rotational
degrees of freedom are treated classically. Lines are drawn
as a guide for the eye.

Figure 4. Finite pressure T2/H2 selectivity in the (2,8) tube at
20 K, using a bulk mole fraction of T2 equal to yT2

� 0.1. The
horizontal line denotes the zero-pressure value (see Table 2),
and circles are from path integral simulations. Lines are
drawn as a guide to the eye.
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sures, one can then expect that the motion along the z

coordinate of a given molecule is progressively hin-

dered by the presence of the others, until a saturation

condition is reached, and further compression of the

system becomes more difficult.

This picture is validated by the results reported in

Figure 6, where we plot the average center of mass ki-

netic energies for H2 and T2 as well as the average

fluid�fluid energy for the mixture adsorbed in the

(3,6) tube. We note that the average fluid�fluid poten-

tial energy per molecule tends to a constant value of V

� �10 K, indicating that the molecular configuration

does not change very much after the onset of

saturation.

The effect of the localization along the z direction is

apparent from the behavior of the kinetic energies as

a function of the loading. The values for T2 and H2, re-

ported in Figure 6, do indeed show an increase at finite

loading with respect to the zero-pressure value. This in-

dicates a progressive hindrance of the motion along

the nanotube axis, until the saturation point is reached

and the kinetic energy tends to a constant value.

It is possible to make an estimate of these effects

by assuming thatOat saturationOall the molecules in

the tube are separated from their neighbors by the

same distance, Lmin. In order to calculate Lmin, one can

assume that the molecules are placed single-file, with

the molecular axis aligned with the nanotube. It is then

possible to calculate the average potential energy per

particle, VFF(x), as a function of the distance x between

the molecules, which is assumed to be the same for

each pair of consecutive molecules.

The distance Lmin is then calculated as the point of

mechanical equilibrium, 
VFF(x)/
x � 0, obtaining the

value Lmin � 3.74 Å, which is close to the value com-

puted from simulations of 3.7 Å. In this configuration,

the potential energy per particle is VFF(Lmin) � �39.3 K.

We further assume that each of the isotopes per-

forms harmonic motions around this mean-field poten-

tial energy minimum. In the actual system, of course,

the dynamics is determined by anharmonic effects, so

that the following estimate has only a heuristic value.

The “spring constant” for these oscillation is evaluated

to be kHO � 
2VFF/
x2(Lmin) � 281.3 K/Å2. Hydrogen iso-

topes oscillating in this harmonic potential would have

a zero-point energy of E0
H2 � �(kHO/mH2

)1/2/2 � 41.3 K

and E0
T2 � 23.8 K for H2 and T2, respectively. The gain in

kinetic energy measured from simulation (Figure 6) at

high loadings due to the motion along tube axis is �Ekin
H2

� 30 K and �Ekin
T2 � 19 K for H2 and T2, respectively.

The average fluid�fluid potential energy, in the case

of equimolar composition, should be on the order of

�V � (2VFF(Lmin) � �Ekin
H2 � �Ekin

T2 )/2 � �7 K. This is in

good agreement with the value computed from simu-

lation of VFF � �9.6 � 0.9 K.

One can further estimate the asymptotic value of

the selectivity at finite pressure by assuming the that

its value at saturation is given by the product of the

zero-pressure value S0 and the selectivity SHO due to the

effective 1D harmonic oscillator discussed above. Us-

ing an independent particle approach,2,3 the value of

SHO corresponding to T2 and H2 in a harmonic oscillator

of spring constant kHO turns out to be SHO � 1.5, in rea-

sonable agreement with the observed behavior of the

selectivity (see Figure 4 and Figure 5).

CONCLUSIONS
In this paper, we presented numerical results for

the calculation of the para-T2/para-H2 selectivity in vari-

ous carbon nanotubes at 20 K. We have discussed, in

particular, the effect of the quantized rotational degrees

of freedom on the selectivity by developing a simula-

tion method that allows a classical treatment of the ro-

tations while keeping a quantum treatment of the

translational degrees of freedom.

We showed that the explicit inclusion of quantized

rotations enhances the zero-pressure selectivity by a

factor of more than 7000 in the (3,6) nanotube, which

is the narrowest tube we have investigated. Rotational

effects are essentially negligible for the (6,6) SWNT. The

rotational degrees of freedom contribute less than a

factor of 2 in the (2,8) SWNT at zero pressure.

We investigated the effect of finite pressures on the

adsorption and the selectivity, extending the BB

Figure 5. Finite pressure T2/H2 selectivity in the (3,6) tube at
20 K, using a bulk mole fraction of T2 equal to yT2

� 10�8. The
horizontal line denotes the zero-pressure value (see Table
2), and circles are from path integral simulations. Lines are
drawn as a guide to the eye.

Figure 6. Average translational kinetic energy (circles, H2;
triangles, T2) and average fluid�fluid potential energy (dia-
monds) for the adsorption of a T2/H2 mixture (yT2

� 10�8) in
the (3,6) carbon nanotube at 20 K.
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method to the case of rigid rotors. We calculated the ad-
sorption isotherms of various hydrogen isotopes in dif-
ferent tubes at 20 K and showed that quantum effects
hinder the adsorption of the lighter species, whose iso-
therm turns out to be separated by many orders of
magnitude in pressure from that of the heavier species.

We calculated the pressure dependence of the selec-
tivity and found that for a bulk H2/T2 mixture the selec-
tivity in narrow SWNTs increases form its zero-pressure
value when the loading in the nanotube approaches
saturation. This behavior has been correlated to the
confinement of the molecular motion along the nano-
tube axis. At high loadings in very narrow nanotubes,
there is a transition from 2D to 3D confinement.

In order to perfom these calculations, we devel-
oped novel algorithms for the hybrid path integral
Monte Carlo simulation of rigid diatomic molecules ac-
counting for both quantum translation and rotation,
showing how to calculate the torques from the expres-
sion of the rotational density matrix. In order to effi-
ciently sample a collection of quantized rotors, we have
also developed a velocity Verlet-like integrator based
on a multiple timestep approach.

We would like to point out that this methodology
can find application in studying hydrogen under any
kind of confinement. For example, one might use it to
simulate the recently characterized states of hydrogen
confined into fullerene cages.33�35

METHODS
Selectivity. The adsorption selectivity of two hydrogen iso-

topes A and B, say T2 and H2, is defined as:

where x and y are the mole fractions in the adsorbed and bulk
phases, respectively. An important simplification of eq 1 can be
obtained in the limit of zero pressure when one can neglect the
adsorbate�adsorbate interaction. It can be shown that in this
case the selectivity depends only on the energy levels E(l) of the
adsorbed molecules, and can be written as4,5

where Qfree is the molecular partition function for the ideal gas,
Qfree-rot is the free-rotor molecular partition function, and Q is the
molecular partition function for the given species. We have de-
noted by d the number of spatial dimensions in which confine-
ment takes place. In the case of hydrogen molecules in carbon
nanotubes, d � 2. In the zero-pressure limit, the selectivity is a
function of the energy levels of the two species, which can be
obtained by a direct diagonalization of the single-particle
Hamiltonian.

In the general case, the calculation of the selectivity of an
A/B mixture can be performed by a direct calculation of the
mole fractions appearing in the definition given in eq 1. In this
case, grand canonical Monte Carlo simulations have been shown
to be particularly effective.4,10 However, direct calculation is not
efficient under conditions of strong confinement,8,9 which is the
regime of interest of this work. We have therefore developed
novel methods to efficiently sample path integral configurations
of adsorbed hydrogen isotopes subject to extreme confinement.

Diagonalization of the Single-Particle Hamiltonian. The Hamiltonian
Ĥ of a collection of N rigid rotors in an external potential is given
by

and is a function of the mass M, the angular momentum L̂, and
the moment of inertia I of the molecules. We have introduced a
fluid�fluid pair interaction potential v and a solid�fluid interac-
tion potential vext. The quantities x̂i and 
̂i denote the operators

for the center of mass position and the orientation of molecule
i, respectively. The Hamiltonian is the sum of the translational
(center of mass) kinetic energy T̂, the rotational kinetic energy
K̂, the fluid�fluid potential energy V̂, and the solid�fluid poten-
tial energy V̂ext.

In the limit of zero coverage, the fluid�fluid interaction po-
tential in eq 3 can be neglected and the Hamiltonian becomes
the sum of single-particle contribution, which can be straightfor-
wardly diagonalized. The single-particle energy levels can be
used to estimate the zero-pressure selectivity using eq 2.

We performed a direct diagonalization of the single-
molecule quantum Hamiltonian in the case of H2 and T2 ad-
sorbed in the (3,6), (2,8), and (6,6) SWNTs, using the interaction
potential specified below. We used as basis set functions of the
form

where Ylm(�, �) are the eigenfunctions for a free rigid rotor, r
and � are polar coordinates in a plane orthogonal to the nano-
tube axis and JN(kMr) is a Bessel function, where kM is chosen so
that JN is a radial eigenstate for a free particle confined in a rigid
cylinder of radius R. The value of the parameter R has been cho-
sen so that the solid�fluid interaction vext(R, 
)/kB is at least 104

K irrespective of the orientation 
 of the rotor. We have checked
that this choice does not appreciably affect the results obtained.

We reached convergence in the calculation of the selected
properties by using 117 translational functions and 45 rota-
tional states in the case of the (3,6) tube, 181 translational func-
tions and 15 rotational states in the case of the (2,8) tube, and
240 translational functions together with 15 rotational states in
the case of the (6,6) tube.

Path Integral Formulation of Statistical Mechanics. The quantum me-
chanical expression for the partition function of a system of N
rigid linear rotors is

where X denotes a vector with the 3N center of mass coordi-
nates of the rotors, and 
 denotes the set of the 2N angles de-
scribing their orientations. A subscript 1 has been introduced for
later convenience.

The quantum partition function of eq 5 can be rewritten by
repeatedly applying the Trotter identity

which is valid for generally noncommuting operators A and B
and further approximated by assuming a large but finite Trotter
number P, obtaining

S(A/B) )
xA/xB

yA/yB

(1)

S0(A/B) )
QB

free

QA
free

QA

QB

) (mB

mA
)d/2QB

free-rot

QA
free-rot[ ∑

l

exp(-EA
(l)/kBT)

∑
l

exp(-EB
(l)/kBT)]

(2)

Ĥ ) ∑
i)1

N

- p
2

2M
∇i

2 + ∑
i)1

N
L̂i

2

2I
+∑

i<j

v(x̂iΩ̂i;x̂jΩ̂j) + ∑
i)1

N

vext(x̂iΩ̂i)

(3)

ΨMNlm(r, R, z;θ, φ) ∝ JN(kMr)eiMRYlm(θ, φ)eikz (4)

Q ) ∫ d3NX1d2NΩ1〈X1Ω1|exp[-�Ĥ]|X1Ω1〉 (5)

exp[A + B] ) lim
Pf∞

(exp[A/P]exp[B/P])P (6)

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 3 ▪ 1703–1715 ▪ 2010 1709



We can now introduce P � 1 completeness relations of the
form

between the factors in eq 7 and write the partition function as

where we have used the identities XP�1 � X1 and 
P�1 � 
1.
The set of coordinates Xi will be said to identify the ith slice. Each
of the matrix elements appearing in the previous equation can
be written as

A straightforward calculation shows that the expectation value
of the translational kinetic energy Boltzmann factor assumes the
form36

where the amplitude a and the spring constant � are given by

and the expectation value of the rotational kinetic energy Boltz-
mann factor becomes37

where PJ( · ) is a Legendre polynomial and �i, i�1
n is the angle be-

tween the directions 
i and 
i�1 of molecule n in two adjacent
slices i and i � 1. B � �2/(2I) is the rotational constant of the ro-
tor and the last equation defines the quantity �.

In the case of homonuclear molecules, the indistinguishabil-
ity of the nuclei imposes some restrictions on the sum in eq 14
according to the spin states of the nuclei. For para-H2, ortho-D2,
and para-T2, as in this work, the summation on the angular mo-
menta J in eq 14 is limited to the even numbers only37 and results
in a positive definite density matrix, which can be directly used
in the Monte Carlo simulations.

For ortho-H2, ortho-T2, and para-D2 rotational states, the sum
is restricted to the odd angular momentum states, resulting in
a density matrix that is not positive definite. As a consequence,
more care has to be taken in performing a Monte Carlo simula-
tion in this case.37,38

The net effect of these algebraic manipulations is that we
have been able to rewrite the original quantum partition func-
tion of an N particle system (eq 5) as a classical partition func-
tion of a NP particle system. The NP particles of the classical
equivalent are naturally divided into P slices of N particles each.
Each particle in a slice interacts with all the other particles in the
same slice via the original intermolecular and intramolecular po-
tential divided by a factor of P (see eq 10). Quantum mechani-
cal effects are taken into account by the interaction of each par-
ticle with the corresponding copy on the previous and following
slice; the center of mass coordinates are bound by the har-
monic potential of eq 11, and the orientations give rise to the in-
terslice rotational partition function of eq 14. The resulting sys-
tem is then equivalent to a classical collection of N ring polymers,
each having P beads. A rigid linear rotor of inertia moment I is as-
sociated with each of these beads. The ith bead on a given poly-
mer interacts only with the corresponding bead on the other
polymers via the original intermolecular potential (rescaled by a
factor of P). The interaction between the beads of a given ring
polymer is described by a harmonic interaction on the transla-
tional coordinates with the two adjacent beads (see eq 11) and
an interaction between the orientational degrees of freedom of
adjacent beads whose density matrix is given by eq 14.

Hybrid Monte Carlo Method. Given the quantum to classical map-
ping described in the previous section, it follows that classical
Monte Carlo methods can be used to calculate quantum thermo-
dynamic properties. Since we expect to work under conditions
where quantum mechanics is not a small correction, it will be
necessary to use large values of the Trotter number P. In this
case, the simple Metropolis method for sampling of the transla-
tional and rotational phase space, such as that discussed by Cui
et al.,39 will be affected by slow convergence due to the different
magnitudes of the intramolecular potential and quantum spring
potential at high Trotter numbers, which scale as 1/P and P,
respectively.

In this work, we use the HMC method,40,41 which consists of
choosing a new candidate configuration by performing a molec-
ular dynamics (MD) move with a large time step; the resulting
configuration is then accepted or rejected using a standard Me-
tropolis condition on the difference in the total energy (which is
not conserved if a large enough time step is taken). The differ-
ence in magnitude of the intramolecular and quantum spring
potentials described above can be naturally overcome in the MD
framework by devising a multiple timestep procedure,42 de-
scribed in detail below.

In order to perform an MD move, one has to know the forces
and the torques acting on each of the rotors. The potential en-
ergy between the molecules on the same slice is given by the re-
scaled original potential, and the quantum mechanical effects
on the translational degrees of freedom are described by a
simple harmonic potential between adjacent slices (see eq 11).
The only unknown is the quantum torque between the mol-
ecules in adjacent slices; we calculate the torque numerically,
starting from the expression of the density matrix in eq 14. Since
eq 14 takes the form of a Boltzmann factor, it can generally be
written as �
i|exp (��K̂/P)|
i�1	 � Cexp [��Urot(�)], where C is
an unknown constant and Urot(�) is the quantum rotational po-
tential energy between two rotors in adjacent slices, whose ori-
entations form an angle � with one another.

We note in passing that for heteronuclear molecules in the
limit PT �� 1, Urot is given to a good approximation by the har-
monic expression Urot(�) � K�2/2 with K given by38

similar to the analogous expression for the translational coordi-
nates, eq 13.

In general, the modulus of the quantum torque can be writ-
ten as

Q = ∫ d3NX1d2NΩ1〈X1Ω1| ∏
j)1

P

exp(-�T̂/P)exp(-

�K̂/P)exp[-�(V̂ + V̂ext)/P]|X1Ω1〉 (7)

1 ) ∫ d3NXid
2NΩi|XiΩi〉〈XiΩi| (8)

Q = ∫ d3NX1d2NΩ1...d3NXPd2NΩP

〈X1Ω1|exp(-�T̂/P)exp(-�K̂/P)exp[-�(V̂ + V̂ext)/P]|X2Ω2〉
〈X2Ω2|exp(-�T̂/P)exp(-�K̂/P)exp[-�(V̂ + V̂ext)/P]|X3Ω3〉

...

〈XPΩP|exp(-�T̂/P)exp(-�K̂/P)exp[-�(V̂ + V̂ext)/P]|X1Ω1〉

)∫ d3NX1d2NΩ1...d3NXPd2NΩP×

∏
i)1

P

〈XiΩi|exp(-�T̂/P)exp(-�K̂/P)exp[-

�(V̂ + V̂ext)/P]|Xi+1Ωi+1〉
(9)

〈XiΩi|exp(-�T̂/P)exp(-�K̂/P)exp[-�(V̂ + V̂ext)/P]|Xi+1Ωi+1〉 )

〈Xi|exp(-�T̂/P)|Xi+1〉〈Ωi|exp(-�K̂/P)|Ωi+1〉exp[-
�(V(Xi+1Ωi+1) + Vext(Xi+1Ωi+1))/P] (10)

〈Xi|exp(-�T̂/P)|Xi+1〉 ) aexp(-�κ|Xi - Xi+1|
2/2) (11)

a ) (MkBTP

2πp2 )3/2

(12)

κ )
MP(kBT)2

p2
(13)

〈Ωi|exp(-�K̂/P)|Ωi+1〉)

∑
n)1

N

∑
J)0

∞
2J + 1

4π
PJ(cos θi,i+1

n )exp[-�J(J + 1)B/P]

≡∑
n)1

N

�(θi,i+1
n )

(14)

K )
IP(kBT)2

p2
(15)
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The direction of the torque is obviously orthogonal to the plane
generated by the two orientations of the interacting molecules,
and it tends to close the angle between the two molecules. The
derivative in eq 16 can be evaluated either numerically or using
the identity

Multiple Timestep Algorithm. Inspection of eqs 10, 13, and 15
shows that the intermolecular forces scale like the inverse of
the Trotter number P, whereas the quantum forces (and, possi-
bly, the torques) are proportional to it. In order to efficiently
sample phase space using an HMC method, it is necessary that
all of the degrees of freedom contribute uniformly to the non-
conservation of energy when a MD timestep is performed.

To this end, we use a multiple timestep method to perform
the MD evolution:42 we divide the forces into “long-range” (the
intermolecular forces, in our case) and “short-range” (the quan-
tum forces and torques). We integrate the long-range forces us-
ing a timestep �t, which is divided into smaller timesteps where
only the short-range forces are evaluated as the system is
propagated.

In our case, we do not know the typical time scale of the
quantum rotation, so we have decided to use three nested loops:
we use a long timestep �t to propagate the system according
to the intermolecular forces, an intermediate timestep �t to
propagate the rotational degrees of freedom, and an inner
timestep �� to propagate the quantum spring forces on the
translational degrees of freedom.

We also need a reversible algorithm to integrate all of the de-
grees of freedom in order for the hybrid method to work. It is
well-known that the velocity form of the Verlet algorithm is re-
versible and can be used in multiple timestep methods.42 Instead
of using algorithms already developed to treat the general mo-
tion of rigid rotors in a multiple timestep framework,43,44 we have
developed a velocity Verlet-like integrator for the rotational mo-
tion of a rigid linear rotor that can be easily coupled to the veloc-
ity Verlet evolution of the center of mass coordinates. Details of
its derivation are given below.

Denoting by x and v the translational positions and veloci-
ties, and by e and � the direction of the molecular axes and
the molecular angular velocities, the multiple timestep method
is implemented as follows:

Calculate Flong and Nlong (intermolecular forces)

Loop over �t/�t
Calculate Nshort (quantum torque)

Loop over �t/��
Calculate Fshort (quantum spring)

normalize e

Calculate Fshort

Calculate Nshort

Calculate Flong and Nlong

Calculate the final translational and rotational kinetic
energies.

The algorithm presented above is based on the assumption
that the fastest moving degrees of freedom are the internal
translational degrees of freedom of the ring polymers, followed
by the rotational motions of the rotors and, finally, by the over-
all (center-of-mass) translation of the ring polymers.

We have checked that this is indeed the case by calculating
the Einstein frequencies �L

2 � Flong
2 /(MkBT) corresponding to the

intermolecular forces, the quantum torques (�N
2 � Nshort

2 /(IkBT))
and the quantum spring forces (�S

2 � Fshort
2 /(MkBT)) in the vari-

ous configurations under investigation. We have found that usu-
ally �S/�N � 2, indicating that indeed the fastest motions corre-
spond to the internal translational degrees of freedom of the ring
polymers. We have therefore set the ratio �t/�� � 2.

On the other hand, the ratio �t/�t depends strongly on the iso-
tope mass (which determines the stiffness of the spring joining
the beads in the quantum-classical path integral isomorphism) and
the extent of confinement to which the molecule is subjected
(which is related to the stiffness of the nanotube�hydrogen inter-
action). We have chosen this ratio to be equal to �N/�L, with typi-
cal values ranging from 8 in the case of H2 in the (3,6) tube to 45 in
the case of T2 in the (2,8) tube. When considering mixtures, we
have set �t/�t to the largest of the values for the pure species.

The reliability of the algorithm has been checked by compar-
ing its results to those obtained by direct diagonalization of an
isolated rotor adsorbed within nanotubes of various sizes (see
Table 1).

Velocity Verlet Integrator for Rigid Linear Molecules. The classical dy-
namics of a rigid rotor is described by the equations

where e is a unit vector in the direction of the rotor and, � is
the angular velocity, I is the moment of inertia, and N is the
torque applied to the system.

These dynamical variables are redundant because the norm of
the vector e is a constant of the motion described by the previous
equations. Since the torque N is, by construction, always orthogo-
nal to the axis vector, the component of the angular velocity along
the unit vector is also a constant of motion. Since the moment of in-
ertia of a linear rotor with respect to the symmetry axis is 0, the
component of the angular velocity along this axis is also 0.

The previous equations cannot be put in the form of a Hamil-
tonian system. In order to develop a time-reversible integrator
that can be used in the HMC method, we demonstrate that it is in-
deed possible to integrate the equations using a velocity Verlet-
like integrator, adapted to take into account the above constraint.
A multiple timestep algorithm can then be developed by analogy
to the velocity Verlet case.

Using the Taylor expansion we can write

) e + δt(� × e) + 1
2

(δt)2(d�

dt
× e + � × (� × e))

(22)

Nquant(θ) ) -
dUrot(θ)

dθ
)

kBT

�
sin θ d�(θ)

dcos θ
(16)

dPl(x)

dx
)

lxPl(x) - lPl-1(x)

x2 - 1
(17)

v f v + ∆tFlong/(2M)

� f � + ∆tNlong/(2I)

� f � + δtNshort/(2I)

v f v + δτFshort/(2M)

e f e + δτ� × e - (δτ)2
�

2/2

x f x + vδτ

v f v + δτFshort/(2M)

� f � + δtNshort/(2I)

v f v + ∆tFlong/(2M)

� f � + ∆tNlong/(2I)

de
dt

) � × e (18)

I
d�

dt
) N (19)

e(t + δt) = e(t) + δt
de(t)

dt
+ 1

2
(δt)2d2e(t)

dt2
(20)

) e + δt(� × e) + 1
2

(δt)2 d
dt

(� × e) (21)
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) e(t) + δt[(�(t) + δt
2

N(t)
I ) × e(t)] - (δt)2

2
�

2(t)e(t)

(23)

where we have restored the explicit time dependence in the last
equation.

The last term in eq 23 assures that the length of the unit vec-
tor describing the direction of the rotor remains fixed. In our
code, we renormalize the unit vector after each time step.

The equation for the angular velocity becomes

So that one can construct a velocity Verlet-like algorithm for
the rotational degrees of freedom as

1. Calculate the angular velocity at half timestep �(t � �t/2)
� �(t) �(�t/2)(N(t)/I)

2. Advance the orientation e at full timestep, using eq 23
3. Calculate the torques at the time t � �t
4. Advance the angular velocity at full timestep
Classical Treatment of the Rotational Degrees of Freedom. In order to

assess the importance of the quantized rotational degrees of free-
dom to the quantum selectivity, we now present a formalism to de-
scribe a system in which only the translational degrees of free-
dom are quantized and the rotations are described classically. In
what follows, we perform the derivation referring to a single rotor
in an external potential, in order to avoid cumbersome notation.
The extension to interacting rotors is straightforward.

Consider a system whose Hamiltonian is given by H � T(p̂)
� K(L̂) � V(x̂, 
̂), where T(p̂) � p̂2/2m is the kinetic energy of
translation, K(L̂) � BL̂2 is the kinetic energy of rotation and V(x̂, 
̂)
is the potential energy with a dependence on the center of
mass position operator x̂ and the orientation operator 
̂. The
quantum mechanical partition function is given by

The classical treatment of some of the degrees of freedom
correspond to the assumption that the operators of the corre-
sponding generalized coordinates and momenta commute be-
tween them, as well as with all other relevant observables. Since
we are interested in approximating the rotation as classical, we
proceed as if the rotational kinetic energy and the potential,
which depends on the molecular orientation, obey the commu-
tation relation [V̂, K̂] � 0, which implies exp[��(T � V � K)] �
exp[��(T � V)]exp[��K]. One can then perform the partial trace
over the rotational degrees of freedom, obtaining

where Qrot is the molecular partition function of the free rotor.
In the last expression, the orientation 
 is the classical orienta-
tion of the rotor and p̂ and x̂ are the momentum and position op-
erators (still quantum mechanical).

When one applies the Trotter formula to the reduced den-
sity matrix � given by eq 28, each of the beads corresponding
to a given molecule has the molecular axis pointing in the same
direction as the others. Considering 
 as a classical variable is
therefore equivalent to suppressing its fluctuation due to the
Heisenberg uncertainty principle.

Path Integral Calculation of the Zero-Pressure Selectivity. In the frame-
work of path integral Monte Carlo, the zero-pressure selectivity
can be calculated by extending the identity transformation
method developed by Challa et al.3 for spherical molecules to
rigid rotors. The zero-pressure selectivity can then be written as

where

is the variation of the quantum potential energy when a mol-
ecule of type B is gradually transformed into a molecule of type
A by performing a number NMC of Monte Carlo steps. The con-
stant C is given by

where the average in eq 29 is performed on a simulation of the
lightest species, B, only. The number points necessary to reach
convergence in the evaluation of the integral in eq 30 for the B
to A transformation is on the order of NMC � 5000.

In performing the calculations, we used a system of at least
50 non-interacting molecules confined inside a carbon nano-
tube. We used at least 20000 HMC steps for equilibration, and a
production run of at least 20 000 HMC. The selectivity was calcu-
lated from eq 29, with configurations sampled every 50 HMC
steps.

Path Integral Calculation of Adsorption at Finite Pressure under Strong
Confinement: The Boltzmann Bias Method. In order to calculate the se-
lectivity at finite pressures, Challa et al.4 have used straightfor-
ward grand canonical simulations of mixtures to obtain the mole
fraction to insert in eq 1. In this case, a trial insertion move is per-
formed by placing ring polymers in the nanotube with configu-
rations drawn from an ideal gas distribution. The usual insertion
and deletion moves are performed for the heavier species only
(T2 in our case), whereas the lighter species is inserted or deleted
by performing T2 ↔ H2 transformations. A transformation move
of a molecule of the species 1 into a molecule of the species 2 is
accepted with the probability

where Ni is the number of molecules of type i in the system be-
fore the transformation is attempted, � is the de Broglie wave-
length, � the chemical potential (which is different for the two
species to account for a given bulk molar composition), and
�Uext is the difference of the sum of the fluid�fluid and
solid�fluid potential energies between the configurations
(N1, N2) and (N1 � 1, N2 � 1). Note that, in order to fulfill the de-
tailed balance condition, the probability of a T2 ¡ H2 transforma-
tion attempt must be equal to the probability of attempting
the reverse move.

The method outlined above works with reasonable effi-
ciency only when the ideal gas ring polymer configurations
used in the insertion moves have a reasonable probability of be-
ing accepted, as it happens when trying to insert gas phase poly-
mers into moderately large tubes. When adsorbed molecules
are in the X2DC regime,8 as it happens in the case of the (3,6)

�(t + δt) = �(t) + δt
d�(t)

dt
+ (δt)2

2
d2

�(t)

dt2
(24)

) � + δt
2

�̆ + δt
2

(�̆ + δt�¨) (25)

)�(t) + δt
2

N(t)
I

+ δt
2

N(t + δt)
I

(26)

Q ) ∫ dx ∑
l,m

〈x;l, m|exp[-�(T + K + V)]|x;l, m〉 (27)

F ) Trrotexp[-�(T + K + V)]

) ∑
lm

〈l, m|exp[-�(T + K + V)]|l, m〉

) ∑
lm

〈l, m|exp[-�(T + V)]|l, m〉e-�Bl(l+1)

)∫ dΩ1dΩ2 ∑
lm

〈lm|Ω1〉〈Ω1|exp[-�(T+

V)]|Ω2〉〈Ω2|l, m〉e-�Bl(l+1)

)∫ dΩ1dΩ2 ∑
lm

Ylm* (Ω1)Ylm(Ω2)〈Ω1|Ω2〉exp[-

�(T + V(x, Ω2)]e-�Bl(l+1)

) ∫ dΩ1(∑
l

2l + 1
4π

e-�Bl(l+1))exp[-�(T + V(x, Ω1)]

) Qrot∫ dΩ
4π

exp[-�(T(p̂) + V(x̂, Ω))]

(28)

S0(A/B) ) C〈exp[-�∆UBfA]〉B (29)

∆UBfA ) ∫
mB

mA

dm(dUint

dm ) (30)

C ) Qfree-rot(B)

Qfree-rot(A)(mA

mB
)3/2(P-1)(IA

IB
)P

(31)

P1f2 ) min[1,
N1

N2 + 1(Λ1

Λ2
)3

exp[�(µ2 - µ1)]exp[-�∆Uext]]
(32)
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tube, the acceptance ratio for insertion drops to very small val-
ues, less than one in a million attempts. As a consequence, equili-
bration is unacceptably slow and statistical accuracy is low. To
overcome the limitations of the standard grand canonical algo-
rithm, one of us has recently developed an efficient method to
improve the acceptance ratio of insertion moves, termed Boltz-
mann bias grand canonical Monte Carlo.10 Here we extend this
procedure to the case of adsorption of quantized rigid rotors in
highly confining geometries.

Using the detailed balance condition, the ratio between the
transition probabilities for insertion, WN¡N�1, and deletion,
WN�1¡N, in the path integral formalism can be written as

where � is the chemical potential of the species to be inserted
with one bead in position X. �UFF and �USF are the fluid�fluid
and solid�fluid potential energy of interaction of the particle in-
serted, T̂ is the translational kinetic energy operator, and K̂ is
the rotational kinetic energy operator. One can further write

where F(�1,..., �P) is the probability distribution for the distances
�i � xi�1 � xi between the beads for polymers drawn from an
ideal gas distribution10 and �(
1,..., 
P) is the probability distribu-
tion for the relative orientations of the rotors associated with
each bead in the ideal gas phase. We have denoted by qrot the ro-
tational partition function of a free rotor.

The transition probability WN¡N�1 can be written as the prod-
uct of an insertion probability IN¡N�1 and an acceptance prob-
ability AN¡N�1. The BB method is based on the choice

for the insertion probability, where

and the last equality defines the quantity �̄. By “undoing” the
Trotter factorization in eq 36, it can be shown that Qads is the par-
tition function of a single quantum rotor moving in the external
potential USF. In the following, �̄ has been calculated from the
knowledge of the energy levels of isolated adsorbed rotors, ob-
tained by diagonalizing the Hamiltonian of rotors confined in
nanotubes with a method described above. Notice that under
conditions of strong confinementOwhen the difference be-
tween the ground state and the first excited level exceeds
kBTOthe quantity �̄ defined above tends to the energy of the
ground state of an isolated adsorbed rotor.

As a consequence of the above definitions, the distribution
function for ring polymer configurations to be inserted (eq 35)
corresponds to that of isolated ring polymers interacting with
the external potential USF. These configurations can be straight-
forwardly obtained by sampling them from a NVT path integral
Monte Carlo simulation performed concurrently with the main
calculation.

Finally, given our choice for IN¡N�1, the ratio between the ac-
ceptance probabilities AN¡N�1 � WN¡N�1/IN¡N�1 of these inser-
tion moves becomes

Notice that eqs 36 and 37 above replace eqs 20�22 of the origi-
nal BB paper,10 where spurious factors of V and �3 were incor-
rectly inserted. Notice, moreover, that eq 37 has the correct limit
for the case of point particles in the absence of adsorbent (i.e.,
qrot � 1 and USF � 0). In that case, one has that Qads � e���̄ �
V/�3 (the ideal gas partition function) and the formula for the ac-
ceptance probabilities reduces to the one reported by Wang et
al.32

In the following calculations, the insertion moves have been
accepted using the standard Metropolis recipe

Potential Model. In order to assess the importance of quan-
tized rotation on the selectivity, we need a potential model that
explicitly treats the hydrogen molecule as a rigid rotor. To the
best of our knowledge, no such model has been extensively
tested in the literature, although we point out that recently,
while this work was in preparation, an improved H2�H2 poten-
tial suitable for condensed state simulations has been devel-
oped.45

The zero-pressure selectivities of various H2 potential mod-
els in the (3,6) nanotube have been evaluated in the framework
of the “simple theory”, that is, using eq 2 with the energy levels
obtained by a direct diagonalization of the Hamiltonian,8 as well
as using suitable approximations valid under the conditions of
strong confinement.9 Many models predict very high selectivi-
ties (in the range of 107�1010). However, the selectivity depends
strongly on the potential parameters.

In this paper, we describe the hydrogen molecule as a rigid
rotor of length l � 0.74 Å with two Lennard-Jones sites on the
position of the hydrogen atoms, having as parameters � � 8.4
K and � � 2.81 Å.46 It has been shown8,9 that this model is able
to describe the most relevant features of hydrogen adsorption in
narrow carbon nanotubes, such as the very high isotopic selec-
tivity and the related extreme 2D confinement regime.

The carbon atoms in the nanotubes are described with a
Lennard-Jones potential, using the Steele parameters �C � 3.4
Å and �C � 28.0 K.47 Solid�fluid interactions have been calcu-
lated using the Lorentz�Berthelot mixing rules. We have gener-
ated carbon nanotubes of various sizes and tabulated the
solid�fluid potential by averaging over the angular coordinates
and over the length of a unit cell in the direction z of the tube
axis, thus obtaining the solid�fluid potential as a function of the
distance of the molecule’s site from the nanotube axis only.

In this study, we have focused our attention on the (3,6), (2,8),
and (6,6) SWNTs. These tubes have geometrical radii of approxi-
mately 3.1, 3.6, and 4.1 Å, respectively. We report the profile of
the potential energy with one of the hydrogen sites in Figure 7.

Figure 7. Average potential energy curves for one of the
hydrogen sites with the carbon nanotubes used in this
study, as a function of the distance from the tube axis.

WNfN+1

WN+1fN

) 1
N + 1

exp(�µ - �∆UFF - �∆USF)d3X ∏
i)1

P

×

〈Ωixi|e
-�(T̂+K̂)/P|Ωi+1xi+1〉d∆idΩi (33)

∏
i)1

P

〈Ωixi|e
-�(T̂+K̂)/P|Ωi+1xi+1〉 )

1

Λ3
F(∆1, ..., ∆P-1) ×

qrotF(Ω1, ..., ΩP) (34)

INfN+1 ) 1
Qads

e-�USFF(∆1, ..., ∆P-1)qrotF(Ω1, ..., ΩP)
d3X

Λ3 ∏
i)1

P

d∆idΩi

(35)

Qads ) ∫ e-�USFF(∆1, ..., ∆P-1)qrotF(Ω1, ..., ΩP)
d3X

Λ3 ∏
i)1

P

d∆idΩi ≡

exp(-�µ) (36)

ANfN+1

AN+1fN

) 1
N + 1

exp[�(µ - µ)]e-�∆UFF (37)

ANfN+1 ) min[1,
1

N + 1
exp[�(µ - µ)]e-�∆UFF] (38)

AN+1fN ) min[1, (N + 1)exp[-�(µ - µ)]e�∆UFF] (39)
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